MATH4210: Financial Mathematics Tutorial 9

Jiazhi Kang

The Chinese University of Hong Kong
jzkang@math.cuhk.edu.hk

26 March, 2024

Continuous Market Models

Question (a)

We consider a continuous time market, where the interest rate $r=0$, and the risky asset $S=\left(S_{t}\right)_{0 \leq t \leq T}$ follows the Black-Scholes model with initial value $S_{0}=1$, drift μ and volatility $\sigma>0$ (without any dividend), so that

$$
S_{t}=S_{0} \exp \left(\mu-\sigma^{2} / 2\right) t+\sigma B_{t} \text { modelled under } \mathbb{P}
$$

Solve the following questions:
(a) A self-financing portfolio is given by (x, ϕ), where x represents the initial wealth of the portfolio, and ϕ_{t} represents the number of risky asset in the portfolio at time t. Let $\Pi_{t}^{x, \phi}$ be the wealth process of the portfolio, write down the dynamic of $\Pi^{x, \phi}$ in $t \in[0, T]$ in form of

Find α and β.

$$
\frac{d \Pi_{t}^{x, \phi}=}{} \quad \frac{\left.\alpha_{t} d t+\beta_{t}\right) d B_{t} .}{} \quad \text {. } \beta \text { ane adapted to } \mathbb{F}
$$

Continuous Market Models
Denote $\tilde{\pi}_{t}=e^{-r t} \pi_{t}$ and $\tilde{s}_{t}=e^{-r t} S_{t} \quad d \widetilde{\pi}_{t}=\phi_{t} d \widetilde{S}_{t}$

$$
d \pi_{t}=d \hat{\pi}_{t}=\phi d \tilde{s}_{t}=\phi_{t} d s_{t}=\phi_{t}\left(\mu s_{t} d t+\sigma s_{t} d b_{t}\right)=\alpha \phi_{t} s_{t} d_{t}+\left[\frac{\beta_{t}}{b \phi_{t} s_{1}} d B_{t}\right.
$$

Definition (Self-financing Portfolio)
(Slides 4B) We say the portfolio $\left(\Pi_{t}\right)$ is self-financing if

$$
d \Pi_{t}=\overline{\left(\Pi_{t}-\phi_{t} S_{t}\right)} \text { rd it }+\phi_{t} d S_{t} .
$$

$\frac{\phi_{t}}{\text { risky asset }}$
Question (b)
(b) There exists a unique risky-neutral probability \mathbb{Q}, together with a Brownian motion $B^{\mathbb{Q}}$ under the probability measure \mathbb{Q}. Give the expression of S_{t} as a function of $\left(t, B_{t}^{\mathbb{Q}}\right)$.

$$
S_{t}=S_{0} \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}^{\theta}\right)
$$

since $r=0$, we have: $S_{t}=S_{0} \exp \left(-\frac{\sigma^{2}}{2} t+\sigma B_{l}^{\theta}\right)$.

Continuous Market Models

$$
\begin{aligned}
& V_{0}=E^{\theta}\left[S_{T}^{2}\right] \\
& \left.S_{T}=\exp \left(-\frac{\sigma^{2}}{2} T+\sigma B_{T}^{\theta}\right) \text {. }\right\} V_{0}=\mathbb{E}^{-\theta}\left[\exp \left(-\sigma^{2} T+2 \sigma B_{T}^{Q}\right)\right] \\
& =e^{-\sigma^{2} T} E^{\theta}\left[e^{2 \sigma B_{T}^{\theta}}\right] \\
& \text { (Moment gernating }=e^{-\sigma^{2} T} \cdot e^{\frac{1}{2} \cdot(2 \sigma)^{2} \cdot T}=e^{\sigma^{2} T} \text {. }
\end{aligned}
$$

Question (c)
(c) We first consider a derivative option with payoff $g\left(S_{T}\right)=S_{T}^{2}$ at maturity T.
(i) Compute the value

$$
\begin{gathered}
V_{0}=\mathbb{E}^{\mathbb{Q}}\left[S_{T}^{2}\right] . \\
\text { if } r \neq 0: \quad V_{0}=\mathbb{E}^{\theta}\left[e^{-r T} g\left(S_{T}\right) \mid S_{0}=1\right]
\end{gathered}
$$

What is the portion price at $0 \leq t \leq T$:

$$
V_{t}=\mathbb{E}^{\theta}\left[e^{-r(T-t)} g\left(S_{T}\right) \mid S_{t}\right]
$$

Continuous Market Models

$$
\begin{aligned}
& V(t, x)=x^{2} e^{\sigma^{2}(T-t)} \\
& \partial_{t} V(t, x)=-\sigma^{2} x^{2} e^{\sigma^{2}(T-t)} \\
& \partial_{x} V(t, x)=2 x e^{\sigma^{2}(T-t)}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{x x}^{2} V(t, x)=2 e^{\sigma^{2}(T-t)} \\
& \partial_{\star} V(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x}^{2} V(t, x)=0 \\
& V(T, x)=x^{2} e^{\sigma^{2}(T-T)}=x^{2}
\end{aligned}
$$

Question (c)
(ii) Let $v(t, x):=x^{2} \exp \sigma^{2}(T-t)$, compute $\partial_{t} v, \partial_{x} v$ and $\partial_{x x}^{2} v$. Check that v satisfies the equation

$$
\partial_{t} v(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x}^{2} v(t, x)=0, \quad v(T, x)=x^{2}
$$

(1) $V(t, x)$ is $E^{\theta}\left[e^{-r(t-t)} g\left(S_{T}\right) \mid S_{t}=x\right]$
(2) Fou PDE $\partial_{\star} v(t, x)+b(t, x) \partial_{*} V(t, x)+\frac{1}{2} \sigma(t, x)^{2} \partial_{x}^{2} x V(t, x)-r v(t, x)=0$ with $V\left(T_{1} x\right)=g(x)$, Then $E\left[e^{-n(t-t)} g\left(X_{T}\right) \mid X_{+}=x\right]$ wolves the PDE where $d x_{t}=b\left(t, x_{t}\right) d t+\sigma\left(t, x_{t}\right) d B_{t}$.
(Feynman - Kac formula)

Continuous Market Models

$$
\begin{aligned}
V\left(t, S_{t}\right) & =V\left(t, S_{0} e^{-\sigma / 2 t+\sigma B_{t}^{t}}\right)^{\prime} d v\left(t, S_{t}\right) \\
& =d u\left(t, B_{t}^{\theta}\right) . ~ I t o ' s \text { formula. } . \\
& =\partial_{t} u\left(t, B_{t}^{Q}\right) d t+\partial_{t} u\left(t, B_{t}^{\theta}\right) d B_{t}
\end{aligned}
$$

Question (c)
(iii) Remember that S_{t} is a function of $\left(t, B_{t}^{(\theta)}\right.$, apply the Ito formula on $v\left(t, S_{t}\right)$ to deduce that $S_{t}=S_{0} e^{-\frac{\sigma^{2}}{2} t+\sigma B_{1}^{\theta}}$

$$
\begin{aligned}
& v\left(t, S_{t}\right) \text { to deduce that } S_{t}=S_{0} e^{-\frac{\sigma}{2} t+\sigma_{1}} \\
& v\left(t, S_{t}\right)=S_{t}^{2} \cdot e^{\sigma^{2}(T-A)}=S_{0}^{2} e^{-\sigma^{2} t+2 \sigma B_{t}} \cdot e^{\sigma^{2} T-\sigma^{2} t}=e^{\sigma^{2} T} \cdot e^{-2 \sigma^{2} t+2 \sigma B_{t}} \\
& S_{T}^{2}=V_{0}+\int_{0}^{T} \underbrace{}_{t} \phi_{t} d S_{t}, \text { where } \phi_{t}:=\partial_{x} v(t, x) .
\end{aligned}
$$

Then deduce that V_{0} is the (no-arbitrage) price of the derivative option $g\left(S_{T}\right)=S_{T}^{2}$.

$$
\begin{aligned}
X\left(t, B_{t}\right)=V\left(t, S_{t}\right) & =S_{-1}^{2} e^{\sigma^{2}(T-1)} \\
& =e^{\sigma^{2}(T-t)} \cdot\left(e^{\left.-\frac{\sigma^{2}}{2} t+\sigma B_{t}\right)^{2}}\right. \\
& =e^{\sigma^{2}(T-t)} e^{-\sigma^{2} t+2 \sigma B_{t}}=e^{\sigma^{2} T} e^{-2 \sigma^{2} t+2 \sigma B_{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \partial t u=e^{\sigma^{2} T} e^{-2 \sigma^{2} t+2 \sigma B_{t}}\left(-2 \sigma^{2}\right) \\
& \partial_{x} u\left(t, B_{t}\right)=e^{\sigma^{2} T} \cdot e^{2 \sigma^{2} t+2 \sigma B_{t}}(\cdot 2 \sigma) \\
& \partial x^{2} x u\left(t, B_{t}\right)=e^{\sigma^{2} T} \cdot e^{-2 \sigma^{2} t+2 \sigma B_{t}}(2 \sigma)^{2} \\
& d u\left(t, B_{t}\right)=e^{\sigma^{2} T} e^{-2 \sigma^{2} t+2 \sigma B_{t}}\left(-2 \sigma^{2} d t+2 \sigma d B_{t}+\frac{1}{2}(2)^{2} \cdot d t\right) \\
&=e^{\sigma^{2} T} \cdot 2 \sigma e^{-2 \sigma^{2} t+2 \sigma B_{t}} d B_{t} \\
& \sigma l
\end{aligned}
$$

$$
S_{t}=e^{-\frac{\sigma^{2}}{2} t+\sigma B_{t}} \Rightarrow d S_{t}=\sigma S_{t} d B_{t} \quad a B_{t} \quad(*) \Rightarrow d S_{t}=\sigma \cdot e^{-\frac{\sigma^{2}}{2} t+\sigma B_{t}} d B_{t}
$$

$$
\begin{aligned}
& S_{t}=e \\
& (t)=e^{\sigma^{2}(T-t)} \cdot 2 \cdot S_{t} \cdot\left(\sigma e^{-\frac{\sigma^{2}}{2} t+\sigma B_{4}}\right) d B_{l}, ~
\end{aligned}
$$

$$
=2 e^{\sigma^{2}(T-t)} S_{z} d S_{t}
$$

$$
d v=2 e^{\sigma^{2}(T-t)} S_{t} d S_{t}
$$

$$
\left.\begin{array}{l}
d V=2 e \\
V\left(T, S_{T}\right)-V\left(0, S_{0}\right)=\int_{0}^{T} \frac{2 e^{\sigma^{2}(T-t)} S_{+}}{S_{+}^{2} T S_{t}} \\
V\left(T, S_{T}\right)=S_{T}^{2}, V\left(0, S_{0}\right)=e^{\sigma^{T}}
\end{array}\right\} \Rightarrow S_{T}^{2}=V_{0}+\int_{0}^{T} \Phi_{t} d S_{T}
$$

Vo in
previous question
V_{t} is a self-finaniing portfolio.

$$
d V_{t}=(\cdots) r_{\tilde{O}}^{r} d t+\phi_{t} d S_{t}
$$

$A l$ so, V_{t} replicate the cosh -flow of S_{T}^{2}
Then by no-arbitrage approach: $V_{0}=V\left(0, S_{0}\right)$ is the option price at time 0 .
But $V\left(0, s_{0}\right)=e^{\sigma^{2} T}$, it implies. V_{0} is the option price at five 0 .

Continuous Market Models

Proposition (Ito diffusion process)
For an diffusion process $d X_{t}=\mu_{t} d t+\underline{\sigma_{t}} d B_{t}$ and a function $f \in C^{1,2}$, then rouses

$$
f\left(t, X_{t}\right)=f\left(0, X_{0}\right)+\int_{0}^{t}\left(\partial_{t} f+\partial_{x} f\right)\left(u, X_{u}\right) d X_{u}+\int_{0}^{t} \frac{1}{2} \partial_{x x}^{2} f\left(u, X_{u}\right) d[X]_{u},
$$

where $d[X]_{u}=\sigma_{t}^{2} d t$.
Question (d)
(d) We now consider another option with (path-dependent) payoff
$\int_{0}^{T} S_{t}^{2} d t . \quad f(x):=x^{2} . \quad f\left(S_{T}\right)=f\left(S_{0}\right)+\int_{0}^{T} d x f\left(S_{t}\right) d S_{t}+\int_{0}^{T} \frac{1}{2} \partial_{x}^{2} f\left(S_{x}\right) d S_{S} T_{t}$
(i) Apply the Ito formula to deduce that

$$
\begin{aligned}
& \text { formula to deduce that } \\
& =S_{0}^{2}+2 \int_{0}^{T} S_{t} d S_{t}+\frac{1}{2} R \int_{0}^{T} \cdot d[S]_{t} \\
& S_{T}^{2}=S_{0}^{2}+\int_{0}^{T} 2 S_{t} d S_{t}+\sigma^{2} \int_{0}^{T} S_{t}^{2} d t . d\left[S_{t}\right]=\sigma^{2} S_{t}^{2} d t
\end{aligned}
$$

Continuous Market Models

Question (d)

(ii) From the above, one obtains that

$$
\sigma^{2} \int_{0}^{T} S_{t}^{2} d t=S_{T}^{2}-S_{0}^{2}-\int_{0}^{T} 2 S_{t} d S_{t}
$$

Deduce the replication cost and replication strategy of the derivative option $\int_{0}^{T} S_{t}^{2} d t$. (Hint: Use the above replication strategy for the option $g\left(S_{T}\right)=S_{T}^{2}$.)

$$
\begin{aligned}
& \int_{0}^{T} S_{t}^{2} d t=\frac{1}{\sigma^{2}}\left(S_{T}^{2}-1-\int_{0}^{T} 2 S_{t} d S_{t}\right) . \quad=\frac{1}{\sigma^{2}}\left(e^{\sigma^{2}} T-1\right)=E\left[\int_{0}^{0}-T_{t} S_{t}\right] \\
& =\frac{1}{\sigma^{2}}\left(V_{0}+\int_{0}^{T} \phi_{t} d s_{t}-1-\int_{0}^{T} 2 s_{t} d s_{t}\right) \cdot \frac{V_{0}-1}{\frac{V^{2}}{\sigma^{2}}}+\int_{0}^{T} \frac{\psi_{t} d d t}{} \\
& \text { where } \psi_{t}=\frac{1}{\sigma^{2}}\left(\phi_{t}-2 S_{t}\right)
\end{aligned}
$$

